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ABSTRACT

This study is confined to a subproblem of a major problem. The
major problem is viewed as that of selecting a particular design from
several proposed design concepts. The subproblem treated here is
that of estimating the reliability of the proposed concepts, with particular
emphasis on complex systems.

In the area of complex systems, two methods are presented, and
the conditions under which these methods can be used are discussed.
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TECHNICAL MEMORANDUM TM X-53592

ESTIMATING RELIABILITY OF COMPLEX SYSTEMS
By
Robert H. Ailor

SUMMARY

This study is confined to a subproblem of a major problem. The
major problem is viewed as that of selecting a particular design from
several proposed design concepts. The subproblem treated here is that
of estimating the reliability of the proposed concepts, with particular
emphasis on complex systems.

The analysis of simple systems is discussed whereby the system
reliability equation can be determined by a relatively easy application
of the fundamental probability theorems. For complex systems, two
methods are presented. First, a canonical expansion scheme technique
is used when the system has a relatively few number of components or
the component probabilities of failure are small. If the number of
components in a system is rather large and the above conditions do not
hold, another method is presented to obtain the complete system reli-
ability equation which depends primarily on defining pertinent output
events for the system.

The reliability functions for the components that make up a system
are discussed and finally, a limited discussion is provided on imple-
menting, controlling, and testing the solution in regard to reliability.



CHAPTER I. SELECTION OF A SYSTEM DESIGN

Introduction

The selection of a system design can be treated as an engineering
management type problem. A situation may exist whereby the engineering
manager is confronted with the problem of selecting a particular design from
several proposed design concepts.

The nature of the technical decision process is basically the same as
any other since it requires recognition of objectives, formulation of criteria
for the system to meet these objectives, and selection of rules or strategies
for making the choice that will hopefully maximize a payoff. ! Criteria for the
selection of a design concept from several competing ones might be based on
such elements as cost, weight, performance, and reliability.

Thus the major problem is somehow to select one concept out of several
based on established criteria. There are methods available to determine how
well objectives have been met based on established criteria. This problem can
become difficult when two or more quantitative objectives are involved. A

measure of efficiency is required for each objective, and a method is required

7. M. English, "Understanding the Engineering Design Process,"
Journal of Industrial Engineering, Volume XV, Number 6, 1964, p. 291.




for transforming units on each efficiency scale into one standard scale with a
relative value of points on this scale.?

In many situations, a limitation of resources precludes the necessary
effort to make the required transformations. In such cases a common proce-
dure is to select one of the most important objectives as a basis for measuring
the performance of each course of action. Minimum levels of performance for
the other elements areimposed as restrictions for an acceptable solution. 3

Determining the value of each of the elements on which the criteria is
based presents subproblems of the major problem. Estimating the reliability
of each design concept is such a subproblem, the objective of which is to
maximize the reliability, which is also the associated measure of efficiency.
Several different system design concepts, each representing a course of action.
may be under consideration. Many such systems are of a complex nature. The
reliability of each system concept is estimated, and the one having the highest
value is presented as the best candidate from the standpoint of reliability. For

the purposes of this study, reliability may be defined as the probability that

some desired event will occur.

2R. L. Ackoff, Scientific Method, John Wiley & Sons, Inc.,
New York, N. Y., 1962, p. 77.

bid., p. 105.



Purpose of the Study

The objective of this study is to develop a method for estimating the
reliability of complex systems. The term complex system is used to indicate
a functional system of such a nature that the reliability of it cannot easily be
estimated by application of the fundamental probability theorems. A complex
system as defined here can also be thought of as composed of a number of
components such that when a reliability logic diagram is constructed for the
purposes of making a probability analysis, the diagram does not result in a
series, parallel, or series-parallel arrangement of the components. The

reliability logic diagrams will be discussed further in Chapter II.

Procedure

Analysis of simple systems will be discussed first. This will consist
of constructing a reliability logic diagram and applying the basic probability
theorems to obtain an equation which expresses the reliability of the system
as a function of the reliabilities of the components which make up the system.

A complex system will then be discussed using an electrical power
distribution system as an example. A system functional block diagram will
be used to construct a reliability logic diagram, and a method for estimating
the reliability under certain conditions will be presented. At this point the

reliabilities of the components that make up the system will be discussed.




Another method for estimating the reliahility of a complex system will
then be developed. Following this will be a limited discussion on implementing,
controlling, and testing the solution. Finally, a summary and recommendations

will be presented.



CHAPTER II. ANALYSIS OF SIMPLE SYSTEMS

Simple Systems Defined

When a system is studied for the purpose of making a reliability
analysis, a reliability logic diagram is constructed to depict the system. A
reliability logic diagram is not a functional schematic of the system. It is
instead a diagram showing the reliability relationship of the components that
make up the system.

Simple systems are characterized by two basic types of relationships:
series and parallel. Components are in series when the failure of any one of
them would mean a failure of the system. Components are in parallel when
successful operation of at least one of them would not cause failure of the
system. Simple systems can also be formed by combinations of these two
relationships which provide series-parallel systems. There are also semi-
parallel situations in which, for example, two out of three components
operating successfully would ensure successful operation of a system or a
segment of a system.

It is cautioned that these systems are not necessarily simple from a
functional standpoint, but simple from a reliability logic standpoint. A

system may be highly complicated from a functional standpoint, but it may be




necessary for every component in the system to work properly in order for
the system to work properly. Thus such a system would be a simple series

system.

Construction of a Reliability Logic Diagram

To construct a reliability logic diagram of a system, it is necessary to
determine the effect of the failure of the components that make up the system.
This is quite often difficult to do and is best done by the design personnel who
are responsible for the system and are most familiar with it. Many times it
is performed by people in a reliability group. When this situation arises, it
is necessary for the reliability engineer to work very closely with the appro-
priate design engineer in order to construct the reliability logic diagram.

After the reliability logic diagram is constructed, the system reliability
is determined as a function of the reliabilities of the components that make up
the system.

This can be accomplished for simple systems by application of the
fundamental probability theorems given below.

The Addition Theorem. If C;and C, are two events which can occur

simultaneously, the probability that either C4 or Cy or both C; and C, will
occur is

P(Cy+ Cy) = P(Cy) + P(Cy) - P(CyCy),
where P(C, + Cy) = probability that either C4 or C, or both C;y and C, will

occur,



P(Cy) = probability that C; occurs,
P(C,) = probability that C, occurs, and
P(CC,) = probability that both C; and C, occur.
If the two events are mutually exclusive so that if one occurs the other cannot,
the probability that either C; or Cy occurs is
P(Cy+ Cy) = P(Cy) + P(GC,).

The Multiplication Theorem. If C;and C, are two events, the probability

that both occur is
P(C,C;) = P(Cy) P(Cy1Cy),
where P(C,|C,) = probability that C, occurs, given that C has occurred.
If Cy and C, are two independent events such that the occurrence of
either is not dependent on the other, then the probability that both occur is

P(C4C,y) = P(C{)P(Cy). 1

Writing the System Reliability Equation

To illustrate how the system reliability equation is written for simple
systems, several hypothetical systems will be postulated. First, a series
system will be used. Suppose a system containing three components has been
studied, and it has been determined that every component in it has to operate

in order for the system to operate. A reliability logic diagram for such a

1p G. Hoel, Introduction to Mathematical Statistics, John Wiley & Sons,
Inc., New York, N. Y., 1962, pp. 9-11.




system is shown in Figure 1-A. Assuming the successful operation of each

component is an independent event, the system reliability equation is written as
Rs =Ri- Ry Ry,

where RS = reliability (probability of success) of the system,

Ri = reliability of the ith component, andi =1,2, 3.

Now consider a system which, after study, results in a parallel
reliability logic diagram. It consists of two components, and the successful
operation of either component will provide successful system operation. The
diagram is shown in Figure 1-B. Assuming again that the successful operations
of the components are independent events, the system reliability equation is
written as

RS =Ry + Ry - RyRy,
where Ry = reliability of the system, and
R; = reliability of the ith component for
i=1,2.

Now since each component operates either successfully or not, the

relationship
Ri + Qi =1
is valid where Ri = the reliability (probability of success) of the ith component

th
and Qi = the unreliability (probability of fajlure) of the i~ component. With

this relationship the system reliability equation can also be written as




Component Component Component
No. | No.2 No. 3
A. Series Arrangement
Component
No. |
— —
Component
No.2
B. Paraliel Arrangement
Figure 1. Reliability Logic Diagrams. A: Series Arrangement,

B: Parallel Arrangement.-
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Rs =1 - QQ,:

This can be verified as follows:

Qi =1- Ri’ thus

Qy=1-Ry, and

Q; = 1 - Ry; substituting into the system reliability equation,

Rs=1— (1-Ry) (1-Ry) =1-(1-Ry-Ry+RyRy)

Rs =Ry + Ry - R{R,.

This is the same equation obtained previously.

Consider now a system consisting of four components. Assume the
system has been studied and that it is concluded that two of the components are
redundant (parallel), and that the other two are in series. This results in a
series-parallel reliability logic diagram shown in Figure 2-A. If independent
probabilities of success for the components are assumed, the system reliability
equation is written directly as

R_ =Ry (Ry + Ry~ RyRy) Ry,
where Rs = reliability of the system, and
Ri = reliability of the ith component for
i=1,2,3,4.

For a semi-parallel system, assume that a system of three identical

components has been studied and it has been determined that the system will

operate successfully if at least two out of three components operate successfully.

11



Component

No. 2
Component Component
No. | No.4
Component
No. 3
A. Series-parallel Arrangement
Component
No.|
At least two out of
Component three must operate
: r ust op
No.2
Component
No.3

B. Semi- parallel Arrangement

Figure 2. Reliability Logic Diagrams. A: Series-parallel
Arrangement, B: Semi-parallel Arrangement.
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The system reliability equation can be written by application of the binomial

expansion which is written in compact form® as

n
\* '
n. n-x.x

R+Q)" = L D gn-xg

x=0(n-x) Ix!
For this particular problem,
n=3,
R = probability of success for each component, and
Q = probability of failure for each component.

Expansion of the compact form gives

3

! -
Y 2 g3%Q* - R? + 3R'Q + 3RQ? + Q.
< = Ox.'(3 - x)!

The first two terms of this expansion represent events for which success will
be achieved. Thus the system reliability equation is
R_ = R? + 3R%Q.

The reliability logic diagram for this system is shown in Figure 2-B.

Numerical Evaluation

The system reliability is evaluated numerically by direct substitution
of the component reliabilities into the system reliability equations. For
convenience of illustration, assume that all the components have a reliability

of 0. 9900, and thus an unreliability of 0. 0100.

’p. G. Hoel, Introduction to Mathematical Statistics, John Wiley & Sons,
Inc., New York, N. Y., 1962, p. 86.
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For the series system, the system equation was
Rs = (R1) (Rz) (R3).
By direct substitution,
RS = (0.9900) (0.9900) (0.9900)
R = 0.9703.
s
For the parallel system, the system reliability equation was
RS = Rl + Rz - Ri' Rz.
By direct substitution,
Rs = 0.9900 + 0. 9900 - (0.9900) (0.9900)
R = 0.9999.
s
In the series-parallel system, the system reliability equation was
RS = (Ri) (RZ + R3 - Rz'R3) (R4)

By direct substitution,

RS = (0.9900) [0. 9900 + 0. 9900 - (0.9900) (0. 9900)] (0. 9900)

R = 0.9800.
s

Lastly, the semi-parallel system produced the system reliability

equation,
R = R®+ (3) (R?) (Q).
By direct substitution,
R_= (0.9900)3 + 3(0. 9900)2(0. 0100)

R = 0.9997.
S

14




CHAPTER III. ANALYSIS OF COMPLEX SYSTEMS

Complex Systems Defined

As discussed in Chapter I, the term complex system is used here to
indicate a functional system composed of a2 number of components such that
when a reliability logic diagram is constructed for the purpose of making a
probability analysis, the diagram does not result in a series, parallel, or
series-parallel configuration. Thus the system reliability equation of the
complex system cannot readily be written by direct application of the funda-
mental probability theorems.

The analysis of complex systems will be discussed, with an electrical
power distribution system as an example. This electrical power distribution
system, shown in Figure 3, is typical of those used in a twin-engine transport
or passenger airplane. This might be one of several proposed systems being
considered.

For each proposed system, it is usually desirable that comparison be
made on the basis of the probability of achieving several desired events. Some
of these events would be:

1. Having power available during flight to at least one AC
bus and at least one DC bus,

2. Having power available during flight to the emergency
AC bus and the emergency DC bus, and

15
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3. Having the capability to dispatch under Federal
Aviation Agency (FAA) regulations.

Construction of a Reliability Logic Diagram for a Complex System

The construction of a reliability logic diagram for a complex system is
performed in the same general manner as for a simple system; however, it
is much more difficult. Initially, the event which is of concern must be
defined. The immediate objective here is to estimate the probability that
this event will occur (or the probability that it will not occur). As discussed
in Chapter II, it is necessary to determine the effect of the failure of the
components that make up the system. This requires a thorough understanding
of how the system operates. Thus, for expediency, the assistance of one of
the system design engineers must be readily available.

No attempt will be made here to give a description of how the electrical
power distribution system operates as that is not the primary purpose of this
study. However, it is necessary to point out at least one major feature of the
system operation. The various buses have the electrical loads divided among
them in such a manner that the complete loss of one AC bus and one DC bus
will not adversely affect the operation of the airplane. !

Subsequently, to develop the method of analysis, the reliability logic

diagram will be constructed with the objective of estimating the probability

IDC-9 Electrical System Fault Analysis, Engineering Report No.
1.B-32161, Douglas Aircraft Co., Long Beach, California, April, 1965,
p. 3.11.
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of occurrence of the following event: having power available during flight to
at least one AC bus and at least one DC bus. This will also be referred to as
the reliability of the system. In other words, system reliability is equal to
the probability of having power available during flight to at least one AC bus
and at least one DC bus.

The reliability logic diagram is shown in Figure 4. This diagram is
constructed from studying the system functional block diagram shown in
Figure 3, and by drawing, if necessary, on the knowledge of the appropriate
design engineer. The diagram reveals that there are several possible paths
for making power available to the left and right AC buses and the left and
right DC buses. To avoid overcomplicating the analysis, the study will be
made assuming a system without the optional auxiliary power unit (APU).
Also independent probabilities of success for the components will be assumed.
If sufficient information was available and it was determined that some of the
probabilities were dependent, then the dependent probabilities would be used.
It is also assumed that mechanical power is available to drive the generators.

Although it is difficult to provide specific rules for constructing a reli-
ability logic diagram such as Figure 4 from an operational or functional block
diagram such as Figure 3, it is worthwhile to discuss the approach for doing
so. As mentioned previously, the operational diagram in Figure 3 reveals
that there are several possible paths for making power available to the left

and right AC buses and the left and right DC buses.

18
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The paths can be traced from left to right by beginning with the source
(generators) and ending with the output components (AC and DC buses).

While proceeding to trace the paths, blocks are drawn to indicate the compo-
nents which the logic paths connect, and the components are identified in the
blocks. It is also possible to trace the paths from right to left, or from the
AC and DC buses to the generators. Actually, it may be desirable to trace the
paths in both directions to provide a self-checking method.

Asgs an example, consider tracing the paths for making power available to
the AC buses. Starting from left to right a block can be constructed in the
upper left hand corner to represent the right generator. A path is then drawn
from this block to another block which represents the right generator relay.
This path is then continued to a block representing the right generator bus
and from there to a block representing the right AC bus. A path for the left
hand portion is constructed in a similar manner. A block is constructed in the
lower left hand corner to represent the left generator, and the path is continued
from left to right, terminating with a block representing the left AC bus.

After the right and left hand portions are completed, further examination
of the diagram reveals a cross-over path to the right of the generator relays
and to the left of the generator buses. A block is constructed in the appro-
priate area which represents the AC cross tie relay. Paths are then
constructed to connect this block to the left and right hand paths. This

completes construction of the reliability logic diagram for the AC portion.

20




The DC portion is constructed in a similar manner. After the diagram is
completed, discussions are held with the system designer to determine the

validity of the paths.

Writing the System Reliability Equation

Before proceeding with the analysis of the electrical power distribution
system, the method to be used will first be demonstrated on two hypothetical
systems. This should make it easier to understand its application later. First
consider the simple, two-component system shown in Figure 1-B, Chapter II
The reliability logic diagram of this system depicted a parallel arrangement
of component 1 and component 2. As discussed in Chapter II, each component
operates successfully or not, and the relationship

Ri + Qi =1
is valid where
Ri = the reliability (probability of success) of the ith component and
Q i = the unreliability (probability of failure) of the ith component.
Using this relationship,
Ri+Qy=1 and
Ry+Qy=1
Taking the product of these two equations gives

(R{+Qp) (Ry +Qg) = (1) (1) = 1.



Expanding the left side of the above equation will produce all possible
events for the system. The expansion is
RiR; + RiQy + QiR + QQ, = 1.
Since the system will work properly if either component 1 or component 2
or both work prope.ly, examination of the left side of the equation reveals
that the first three terms represent events for which successful system
operation will be achieved. Therefore the system reliability (RS) as a
function of the component reliabilities and unreliabilities is
R, =RR; + RiQ; + QiR,.
Substituting (1 - R,) for Qy and (1 - Ry) for Q,, the system reliability
can be expressed as a function of the component reliabilities. Substituting,
Rs =R4Ry + R4(1 - Ry) + (1 - Ry)R,

RS = Ri + Rz - R1R2

This is the same equation that was obtained in Chapter II by direct application
of the addition theorem.

The system reliability equation can also be determined from the
canonical form presented below. This is merely a scheme to write out all the
possible events and show their significance as to success or failure of the
system.

The procedure of the technique is first to write down the term which
represents success of all the components. Next, the terms are written down

which represent the failure of a single component. Then the terms are written

22




down to represent the failure of two components. The process is continued
until all possible events are represented. The system reliability equation is
then written by summing those terms that represent events which result in

system success.

EVENT SYSTEM CONDITION
RiR, = Success
RiQq = Success
QR,y = Success
Q1Q = Failure

Summing the success terms produces the system reliability equation
RS = R4Ry + R{Qs + Q4R,.
This is the same equation obtained previously.

Now consider a system composed of five components. After being
studied, a reliability logic diagram is constructed of the system as shown in
Figure 5. This is of a more complex nature than the previous one. System
success is achieved if there is an output from component 4, or component 5,
or both. The system reliability equation is determined by expressing the

system events in canonical form, and summing those which represent success.

EVENT SYSTEM CONDITION
RR:R3R R = Success
Ri{RyR3R,Q5 = Success
RiR;,R3Q4R; = Success

23




COMPONENT
NO. I

COMPONENT
NO. 4

COMPONENT
NO. 3

COMPONENT
NO. 2

COMPONENT
NO. 5

Figure 5. Reliability Logic Diagram for
a System of a Complex Nature
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EVENT
R 1RyQsR4Rs
R QyR3R4R;5

Q1RyR3R4Ry

R1RyR3Q Q5
R{R,QsR Q5
RiQR3RQ5

QiR,R3R Q5

RR,Q3:QR5
R1QR3Q4R5

Q1R R3;QR 5

R{QyQ3R4R5

QiRy,QsRR;

Q1QR3R4R5

R R,Q3Q4Q5
R1QaR3Q4Q5
Q1R R3QQ5

R1Q2Q3R4Q5

Qi1R,Q3R4Q5
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SYSTEM CONDITION

Success

Success

Success

Faijlure

Success

Success

Success

Success

Success

Success

Success

Success

Failure

Failure

Failure

Failure

Success
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EVENT SYSTEM CONDITION

QQ;R3R4Q5 = Failure
RQQ3Q4R5 = Failure
Q1RyQ3Q4R 5 = Success
QQyR3Q4R5 = Failure
QQyQ3R4R5 = Failure
RiQyQ3Q Q5 = Failure
Q RyQ3QQ5 = Failure
Qi1QRQQ5 = Failure
Q1Q,Q3R Q5 = Failure
QQ2Q:Q4R5 = Failure
Q{QQ3Q Q5 = Failure

The system reliability equation can now be determined by summing the
terms for those events which represent successful system condition.
R = RiR;RgR4R; + R{RR3R Qs
+ RjRyR3Q4R;5 + R1RyQ3R (R
+ RiQoR3RR5 + QRyR3R4Rs
+ R{RyQ3RQs5 + R1Q:R3RQs

+ QRyR3RQ5 + RiRyQ3Q R
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+ R{QyR3Q4R5 + Q1RyR3Q R
+ R{Q:Q3R4R;5 + Q1R,Q3RR;
+ RiQQRQ5 + Q1R;Q3Q4R5
By substituting (1—Ri) for Qi’ the system reliability equation can be simplified.
After some tedious reduction processes, the equation becomes
RS = RjR4 + RyR5 + R{R3R5 + RyR3Ry
- RiRyR3R¢ - RiR;R3R;5 - RiR;RR;
- R{R3RR;5 - RyR3R4R5 + 2R{RyR3R4R;s.

It will be seen later in the section on numerical evaluation that this
reduction is not necessary to obtain a numerical answer.

With the knowledge gained from the analysis of the relatively simple
complex system, it will now be easier to understand the analysis of the
electrical power distribution system. Reference to the reliability logic
diagram of the system in Figure 4 indicates that certain portions of the diagram
can be reduced by the techniques used on simple systems. For example, the
generator and the generator relay can be combined in series for both the left
and right portions of the system. In other words, they can be combined by the
application of the multiplication theorem.

In the right hand portion, the AC ground service tie relay, the ground
AC bus, the right transformer rectifier (T-R) No. 2, the reverse current
relay, and the DC ground service tie relay can also be combined in series into

a single component. The right T-R No. 1 and the reverse current relay can
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be combined in series into a single component. After this reduction, the
latter is seen to be in parallel with the former, and they can be reduced to
a single component by applying the addition theorem. A similar reduction
can be made in the left hand portion of the system.

After the techniques used on simple systems have been applied as exten-
sively as possible, a simplified reliability logic diagram can be constructed
as shown in Figure 6. Examination of this diagram reveals that the desired
event discussed previously is achieved if there is an cutput from component
8 or 10 or both and from component 11 or 12 or both. The equation for this
system's reliability can also be determined by expressing the possible system
events in canonical form, and summing those which represent success. How-
ever, these processes become prohibitive for a system with this many
components. When this is the case, and the component probabilities of failure
are small, it is a good approximation simply to determine the numerical value
of the first few success terms and sum them to obtain the system reliability
estimate. In view of this, the construction of the canonical scheme for the
electrical power system will be delayed until the next section on numerical

evaluation.

Numerical Evaluation

For a complex system, the reliability can be estimated by compiling a
list of the success terms from the canonical scheme, numerically evaluating

them, and obtaining the sum of these numerical values. The estimate can also
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be obtained from the reliability equation after it has been determined by
simplifying the sum of the success terms. This can be done quite readily for
the system of five components, but as discussed earlier, obtaining the complete
expansion for the electrical power system to determine the complete system
equation is far too cumbersome. If the component probabilities of failure are
small, a good approximation can be obtained from the first few terms as
previously discussed.

Both ways will be illustrated using the hypothetical system shown in
Figure 5. TFirst consider the method of numerically evaluating the success
terms as they appear in the canonical scheme. For convenience of illustration,
assume each component has a reliability of 0. 90000 (hopefully, much higher in

an actual system) and thus an unreliability of 0. 10000.

SUCCESS TERM NUMERICAL EVALUATION
R1R2R3R4R5 = 0. 59049
R1R2R3R4Q5 = 0. 06561
R1R2R3Q4R5 = 0. 06561
R1R2Q3R4R5 = 0. 06561
R1Q2R3R4R5 = 0. 06561
QiR,RsR4Rs = 0.06561
RiRyQ3R4Q5 = 0.00729
RiQeR3R Q5 = 0.00729
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SUCCESS TERM NUMERICAL EVALUATION

Q;RR3R Q5 = 0. 00729
RiRyQ3Q4R; = 0. 00729
R{Q,R3Q4R;5 = 0. 00729
QiR:R3QR5 = 0. 00279
\

RiQ;QsR4Rs = 0. 00729
QR,QsRR;5 = 0. 00729
RiQ:Q3RQs5 = 0. 00081
Q1R,Q3Q4R5 = 0. 00081

R = 0. 97848

Now consider the method of substituting the component reliabilities
directly into the reduced system equation. The system equation obtained in the
previous section is

RS =R R4 + RyRs + RiR3R5 + RoR3Ry
- R{RR3Ry - R{RyR3R5 - R{R.R4R;
- R{R3RR5 - RyR3RR5 + 2RjRyR3R4R;.
By direct substitution, the reliability estimate is
RS = 0.97848.
This agrees with the value obtained before.

Construction of the canonical scheme for the electrical power system has
been delayed until now. The numerical estimate of the system reliability will
be included in the scheme. Under the system condition column, S will denote
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success, and F will denote failure. For convenience of illustration, relia-
bilities for the components as shown in Figure 6 will be assumed to be 0. 999000.
Thus the component unreliabilities are 0. 001000 (1 x 1073).

From the binomial expansion, the term indicating three failures is
220R°%Q%. Since Q =1 x1073, Q¥ =(1x107%3=1x10"% Now R is less than
one, so this would represent a sum total of less than 220 x 10”%. Since a
portion of this sum represents failure, terms involving three Q's would not
make any significant contribution. Terms involving higher orders of Q would
decrease correspondingly. Therefore, it is necessary only to list and evaluate
those success terms involving zero, one, or two Q's. For those terms repre-

senting failure, the word '"none' will appear under the numerical value column.

SYSTEM NUMERICAL
EVENT CONDITION VALUE
R 1R,R3R RsReRRRsR (R Ry, = S = 0. 98806578
R 1R, R3RRsReR R R 4R (R 1Qs = S = 0. 00098905
R ;RyR3R R:ReRyReReR /1R 1s = S = 0. 00098905
R1R,R3RR:ReR7RRQ10R1(Ryy = S = 0. 00098905
R;R,R3RR5ReR;RQsR{oR 1Ry = S = 0. 00098905
RiR,R3R RsReR:QgRoR1oRy1R 1o = S = 0. 00098905
R;R,R3RRsReQ:RRgR{oR 4R 1o = S = 0. 00098905
R {RyR3RR;QeR:RsRR 1R 1Ryp = S = 0. 00098905
RiRyR3RQ;ReR;RgR4R (R1Ryy = S. = 0. 00098905
R4RyR3QR;ReRRR4R 1R 1Ry = S = 0. 00098905




SYSTEM NUMERICAL

EVENT CONDITION VALUE
R 1R,Q3RR:ReR/RgRoR R 11R 1y = s = 0. 00098905
R {Q;R3R,RsReRRgRoR 1R 11R 1y = S = 0. 00098905
Q4RyR3R RsReRRyR4R {oR1;R 2 = S = 0. 00098905

In the events that are iterated below, the appropriate R belongs to a

space if that space is void of a symbol.

RiRyR3RRsReR/RsRgR10Q41Q, = F = None
Qe Qg = S = . 00000099
Qy Qi = S = . 00000099
Qs Qo = S = . 00000099
@ Q2 = S = . 00000099
Qs Qq = S = . 00000099
Qs Q2 = S = . 00000099
Qy Qi2 = S = . 00000099
Q3 Qi = S = . 00000099
Q, Qi = S = . 00000099
Q4 Qi = S = . 00000099
R3RyR3RR:RR;R5RsQ10Q11Q12 = S = . 00000099
Qy Qqy = S = . 00000099
Qs Qi = S = . 00000099
Qr Qq4 = S = . 00000099
Qg Q3 = S = . 00000099
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SYSTEM NUMERICAL

EVENT CONDITION VALUE
RiRR3RQsReR1R gR9R Q11 R 12 = S = - 00000099
Qy Q11 = S = . 00000099
Q3 Qi1 = S = . 00000099
Q, Qi = S = . 00000099
Q4 Qi1 = S = . 00000099
R4R,R3RR:RRRsQ4Q10R 1R 12 = S = . 00000099

Qs Qo = F = None
Q Qg = S = . 00000099
Qg Qi = S = . 00000099
Qs Qi0 = S = . 00000099

Qy Q1o = F = None
Qs Qio = S = . 00000099
Q Q1o = S = . 00000099
Qq Qyo = S = . 00000099
RiR:R3RR;ReR1QQsR10R11R 19 = S = - 00000099
Q Qg = S = . 00000099
Qs Qo = S = . 00000099
Qs Qs = S = . 00000099
Qy Qy = S = . 00000099
Q3 Qy = S = . 00000099
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SYSTEM NUMERICAL

EVENT CONDITION VALUE
R @QR3RRsReR1QgQsR 1oR11R 1o = S = . 00000099
Q4 Qy = S = . 00000099
R;RyR3RR;RQQsRsR10R1 Ry = S = . 00000099
Qg Qg = S = . 00000099
Qs Qg = F = None
Qy Qs = S = . 00000099
Q3 Qs = S = . 00000099
Q. Qs = S = . 00000099
Q4 Qg = S = . 00000099
R 1R, R3R4R5Q¢Q7RsR9R10R11R12 = F = None
Qs Qq = S = . 00000099
Qy Qq = F = None
Qs Q, = S = . 00000099
Q, Qq = S = . 00000099
Qy Qy = S = . 00000099
R1RyR3RQ5QeR1RgRsR10R11R 1, = F = None
Qs Qg = S = . 00000099
Q3 Qs = S = . 00000099
Q, Qg = S = . 00000099
Q4 Qs = S = . 00000099



EVENT
R1R;R4Q4QsR¢R1RsRgR10R11R 1
Q Qs
Q Qs
Q4 Qs

R1R,Q3QRsReR7RgRgR10R11R 1o
Qy Q
Q4 Qy

R Q;Q3RRsR¢R1RgRgR19R11R 12

Q1 Qg

Q1QR3RRsReR7RgRgR 1R 11R 12

SYSTEM
CONDITION

F

S

F

NUMERICAL
VALUE

None

. 00000099

. 00000099

. 00000099

. 00000099

. 00000099

. 00000099

. 00000099

. 00000099

None

Summing these success term evaluations will produce an estimate of the

system reliability. The value is

R
]
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CHAPTER IV, COMPONENT RELIABILITIES

Component Reliability Functions

Before proceeding further, the determination of the reliabilities of the
components that make up a system should be discussed. This will not be an
all inclusive discussion, as component reliability functions are treated in
several books such as the one by Lloyd and Lipow.! Component reliability
functions have been derived from the specific applications of functions that
have existed for many years.

The reliability function can be computed from the mutually exclusive

relationship

R(t) + Q(t) = 1.
Thus

R(t) =1 - Q(t), where
R(t) = reliability of the component as a function of time (or some other
variable) and one or more parameters, and
Q(t) = unreliability of the component as a function of time (or some other
variable) and one or more parameters.

The component unreliability function can be defined in terms of a failure

distribution function (cumulative probability) or in terms of a failure frequency

Ip. K. Lloyd and M. Lipow, Reliability: Management, Methods, and
Mathematics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962,
pp. 112-1586.
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function (probability density function). These functions can be discrete or
continuous. Many of these functions exist, but only a few will be discussed.
For a continuous function, the unreliability distribution function is
Q(t)=Pr(T=t) ; 0<t< =,
This equation states that the unreliability, as a function of the variable time,
is equal to the probability that the time of failure, T, is less than or equal to
the time, t. In other words, it is the probability that the component has
failed in the time interval 0 to t.
If f(t) is the time derivation of Q(t) then
f(t)dt = Pr(t = T=< t+ dt).
In this equation, f(t) is the failure frequency function. The left hand side of
the equation represents the frequency with which the component, beginning to
operate at t = 0, will fail in the interval t to t + dt.
From the proceeding discussions, it can be seen that
Q(t) = fot £(t) dt.
Using the basic concept of a frequency function,? the component reliability
function is determined to be
R(t) =1-Q(1) =1~ [ f(tds, or

R(t) = ft°° £(t) dt.

This follows from the relationship

fot f(ydt+ [ f(0di= 1.

:p. G. Hoel, Introduction to Mathematical Statistics, John Wiley & Sons,
New York, N. Y., 1962, p. 35.
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For a discrete function, the fajlure frequency function, f(x), is a
function that gives the probability that the random variable x will assume any

particular value in its range. Thus

a-1
Q(x)= ) f(x) = Pr(0<x=a- 1), and
x=0
n
R(x) = Z f(x), since
=a
a-1 n
Z f(x) + E f(x) = 1.
x=0 X=a

The Normal Function

The normal function is used as an approximating function to compute the
reliability of a component when the component tends to have wearout charac-
teristics. The failure frequency function for the normal function is

(- M2
o —%—;ML , where

a

£(t) =
oN2r

t = the age of the component,
M = the mean wearout life, and
o = the standard deviation of the lifetimes from the mean M.
If the component starts operating at t = 0, the unreliability of the

component for a period of operation to time T is

T T, —-mP
QUT)= [ f(tydt= [ ———e 207
0

0 oN 2T
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Since the normal function is defined from - « to + «, the lower limit should

be - »., However, when the transformation of variables is made, the lower
limit should be sufficiently small to indicate a negligible error when the
evaluation is made using the standard normal tables. The component reliability

function is

- (t- M)
o 2
oN 2T

In the above equations, the parameters M and o actually represent
sample estimates rather than the true population parameters.

When the component reliabilities are computed, it is desirable to have
the estimated parameters of the functions adjusted to a specified confidence
level. In the normal case, the mean wearout life is adjusted to a lower level
one-sided confidence limit. If v is the confidence level, the desired equation

is

g

Vo~

A
Pr(M -K =SM)=y =0.90,

A
for example, where M is the estimated mean,

K is the number of standard deviations from the mean and is a percentage point
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on the abscissa of the standardized normal curve for a certain area under the

curve, and the subscript
a=1-%.73

The equation

A g

states that the probability is equal to vy and that the true mean wearout life

is greater than or equal to

o

A
(M-, 75 )

Thus

is the value used in the component reliability function for the mean wearout

life.

As an example, assume the following data were available for a component:

A

M = 1000 hours n= 36

It

s = 196 hours v = 0. 90 (confidence level).

IR

g

3B. W. Lindgren and G. W. McElrath, Introduction to Probability and
Statistics, The Macmillan Company, New York, N. Y., 1959, pp. 165-167.
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The mean wearout life adjusted to the lower limit would be

196
ML = 1000 - Ko_ 10 ——\[-:3_-6—_—= 1000 - 1.28 —(%)'

ML = 967, 3 hours.
This would be the value used in the reliability function.

With an operating time of 500 hours, the reliability would be computed
as

R(500) = [0 f(t)dt.

Using the standard transformation,

, - t- M 500 -967.3 _ 467.3

o 196 T 196

= -2.38.

The area under the curve corresponding to this value gives a reliability of

R = 0.9913.

The Binomial Function

The binomial function can be used to compute the reliability of a
component when the component operation consists of a number of trials for a
given period of operation. It is a discrete function and its failure frequency

function is

n! X

X n-
9= amr ® W

n = number of items tested or subjected to operation,

R = probability of successful operation on any one trial, and
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x = number of successful trials out of the total number n. 4

The component reliability function is given by

n

n! X n-x

R(s) = Z x'(n - x)! R(1-R) !
X =8

where the component must operate at least an s number of times. In this
equation, n may very well be equal to s. In actual practice, R in the above
equation represents an estimate which has been adjusted to a lower one-sided
confidence limit.

The lower one-sided confidence limit estimate is computed from the
equation

X n-x
R_"(1- =1 -
= (n- 7 Ry ( RL) 1 - v, where

uMs

n = number of trials from which R is estimated, and

RL = reliability for the one-sided lower confidence limit.

For a given confidence level, v, the equation can be solved for RL' This

provides a 100 y percent confidence statement that the true reliability , R, is

greater than or equal to the lower one-sided confidence limit R This equation

L’

can be solved by trial and error or by the use of established tables. 5

ip. G. Hoel, Introduction to Mathematical Statistics, John Wiley & Sons,
New York, N. Y., 1962, pp. 86, 239.

J. R. Cooke, M. T. Lee, and J. P. Vanderbeck, Binomial Reliability
Table, U. S. Naval Ordnance Test Station, China Lake, Calif., January 1964.
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As an example, assume that a component had been subjected to 500 trials
and was successful 499 times. For a given confidence level of ¥y = 0. 90, the
established tables give a lower one-sided confidence limit of RL = 0. 99224.

This is the value used in the component reliability function. If the

component had to operate successfully for one trial during a given period of

operation, its reliability would be computed as

1
1!
R(1) = 21 ot (0.99224) (1 - 0.99224)°
x:

R(1) = 0.99224.

The Exponential Function

The exponential function is used as an approximating function to compute
the reliability of a component when the component is subjected to failures that
occur at random intervals. The failure frequency function for the exponential
function is

f(t) = Ae M, where
t = operating time period, and
A = average failure rate (assumed to be a constant).
If the component starts operating at t = 0, the unreliability of the

component for a period of operation to time t is

Qw = [ far= [ e Mat

Qty=1-e M
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The reliability of the component is

R(t) = ft°° £(t)dt = ft“’ re ~ Mat

R(t) = e M.

The reliability function for the exponential situation can be derived as a

special case of the generalized Poisson Law

n

Pn(t)= LL",t o M

where Pn(t) is the probability of exactly n failures during the time interval
0 to t.® For a given component, the probability of having zero failures for that

particular component is

0
R(Y) = P (1) = AAb) At - At

Y ©

R(t) =e M.

The lower one-sided confidence limit for the exponential case is taken
care of by adjusting the mean-time-between failure parameter. The mean-
time-between failure, denoted by m, is given as the recip:‘ocal of the failure
rate, or m = —i— ) It has been shown that the ratio 2r —:; is a random

variable which is distributed as chi-square (x2?) with 2r degrees of freedom

1. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and
Modern Engineering, McGraw-Hill Book Co., Inc., New York, N. Y.,
pp. 654-657.
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A
where r is the number of failures.’ The estimate m is obtained by dividing

the total test time (T) by the number of failures. The symbol m represents

the true population parameter. The confidence limit equation is
A

2rm
= =1-q@=
Pr ( = xzoz;Zr) a=vy.

This equation states that there is a probability of vy that the value of the ratio

A
2rm

will be less than or equal to the indicated chi-square percentage point.

By rearrangement, the equation may be written as

A
Pr( 2rm

X

o ;2r

=sm)=1-a=yv.

Thus the lower one-sided confidence limit is

2/\
C=rm

L ¥

a;2r
The probability is 7 that the true m will be greater than or equal to this value.

It is this value that is used in the component reliability function.

As an example, suppose that from actual component operating experience

N
an estimate m were determined to be

A T 20, 000
m= —IT = —T—hours, where

r = 1, the number of failures, and

T = total test time, 20,000 hours.

For a 90 percent confidence level (vy), the lower one-sided confidence limit is

2rm (2) (1) (20,000) 40, 000
CL=% Y T 4.605
a;2r 0.10;2 )

"B. Epstein and M. Sobel, "Life Testing," American Statistical
Association Journal, Sept. 1953, pp. 486-502.
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CL = 8,700 hours.

Using this value and a one-hour operating time, the component relia-

bility equation gives

I
R(t) =e M= ™

R(1) =e _ 0. 000115

R(1) = 0. 999885.

The Weibull Function

The Weibull function is a function which has the capability of theoretically
describing many different shapes of failure rate functions. The failure fre-
quency function for the Weibull function is

f(t) = axt®” 1 e Ma, where
a>0,A>0,
A = scale parameter, and
a = shape parameter.

If a component has a Weibull failure frequency function, the unreliability

of the component for a period of operation from t = 0 to time t is

Qt) fot £(t)dt

o
1_e—>\t

Q(t)

®D. K. Lloyd, and M. Lipow, Reliability: Management Methods, and
Mathematics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962,
pp. 137-138.
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The reliability of the component for the same operating period would be
R -=e” M
When the shape parameter, «, is equal to one, the exponential function
is a special case of the Weibull function. If o = 1 is substituted into the

- A
component reliability function, the result is R(t) = e t. This is the same

equation obtained in the previous section for the exponential function.

Selection of a Function

When a theoretical probability function is being considered as a model
for the actual probability function, the model should be tested to see how well
it fits the actual situation. If sufficient data are available to formulate an
empirical frequency function, one test that can be used is the chi-square
goodness-of-fit test to see how well an assumed theoretical function matches
the actual situation. If sufficient data are not available, the function must be
selected by using judgement based on past experience and a logical rationale.

The chi-square goodness-of-fit test is performed by evaluating the

function

kK
xt = Z U , where

Oj = observed frequencies,
Ej = expected or theoretical frequencies,

de = critical value,
, O

d =k - 1 - h = degrees of freedom,
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k = number of class intervals,

h = number of population parameters estimated to determine expected
frequencies, and

a = level of significance for the test. ?

The test is performed by stating a hypothesis that the data come from some
theoretical function. If the calculated value of the chi-square is greater than
the critical value, the hypothesis is rejected. If the calculated value is less
than or equal to the critical value, the hypothesis is not rejected. The latter
means that the theoretical function can be used as an approximation to the
actual situation.

As an example of how data inputs to determine models are analyzed to
establish a reliability function for a component, assume that the data listed
below have been collectedon a particular component. The data presented
represent the time in hours at which a component failed when it started
operating at t = 0.

Time of failure in hours

500 4400
750 4800
900 5000
1000 5400

M. R. Spiegel, Theory and Problems of Statistics, Schaum
Publishing Co., New York, N. Y., 1961 pp. 201-202.

49



Time of failure in hours

1500 5600
1700 6600
1750 7700
2200 8300
2600 8700
2900 9700
3000 10500
3500 11600
3700 11800
3900 12500
4000 13500
Total = 150,000 hours

If these data are grouped into convenient time intervals and the frequency
of failures is plotted against the time intervals, this will provide a rcugh idea of
the form of the failure frequency function. If an equal time interval of 1000
hours is selected and the data plotted on this basis, the form will indicate that
a theoretical exponential frequency function might be a good model or relia-
bility function for this component. The chi-square goodness-of-fit test will

be applied to this data to see how well the theoretical function fits the actual
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situation. When this test is used in actual practice, a much larger sample is
desirable; however, this sample will be sufficient for the purposes of illustra-
tion.

The hypothesis here is that the data came from an exponential population.
The level of significance («) is selected as o = 0.20. This is the probability
of rejecting the hypothesis when it is actually true. Before applying the
chi-square test, it is necessary to determine the expected or theoretical
values for the chosen class intervals. To do this, it is necessary to determine
the parameters of the theoretical function which is the exponential in this case.
The exponential failure frequency function is given as

£(t) =re "

The only parameter in this function is lambda (A), and it is determined by

» where

n = sample size or the number of components that have failed, and
. . .th
ti = time of failure for the i component.

The next step is to set the k class intervals and to determine the
theoretical relative frequencies for each class interval. The theoretical or
expected absolute frequencies for each class interval is then determined by
multiplying the theoretical relative frequency of each class interval by the
value of n. The relative frequency for a particular class interval can be

determined by setting an upper limit for that class interval, determining the
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cumulative probability for that upper limit, and subtracting the cumulative

probability to the upper limit of the next lower class. The results of applying

this procedure are shown in Table 1.

Table I. Determination of Data for Applying Chi-Square Test

Upper limit Theoretical Theoretical Theoretical
Class of class Cumulative Relative Absolute
j interval Probability Frequency Frequency
1 500 .10 .10 3.0
2 1000 .18 . 08 2.4
3 1500 .26 .08 2.4
4 2000 .33 . 07 2.1
5 2500 .39 . 06 1.8
6 3000 .45 .06 1.8
7 3500 . 50 .05 1.5
8 4000 . 55 .05 1.5
9 4500 .59 .04 1.2
10 5000 .63 .04 1.2
11 5500 . 67 .04 1.2
12 6000 .70 . 03 .9
13 6500 .73 .03 .9
14 7000 .75 .02 .6
15 7500 .78 .03 .9
16 8000 .80 .02 .6
17 8500 . 82 .02 .6
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Table I. -~Continued

- Upper limit Theoretical Theoretical Theoretical
Class of class Cumulative Relative Absolute
j interval Probability Frequency Frequency
i8 9000 .83 | .01 .3
19 9500 .85 . 02 .6
20 10000 .86 .01 .3
21 11000 .89 .03 .9
22 12000 .91 .02 .6
23 13000 .93 .02 .6
24 14000 .94 .01 .3
25 15000 .95 .01 .3
) 26 16000 .96 .01 .3
27 17000 . 97 .01 .3
28 20000 .98 .01 .3
29 © 1. 00 .02 . 6

Since the theoretical or expected absolute frequency in each class should be

equal to or greater than five, it is necessary to combine some of the classes to

meet this condition. Combining certain classes gives the results shown in

\ Table II.
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Table II. Data for Applying Chi-Square Test

Upper limit Theoretical Observed
Class of Class Absolute Absolute
j interval Frequency (Ej) Frequency (Oj)
i 1000 5.4 4
2 2500 6.3 4
.0
3 4500 6 8
4 7500 5.7 5
5 © 6.6 9

The calculated value of chi-square is determined by
5 (o, - E)?
¥=), 4 i

- (4-54)*%, (4-6.3)%2, (8-6.0%2, (6-5.72, (9-6.6)2
5.4 6.3 6.0 5.7 6. 6

= 0.363 + 0.840 + 0.667 + 0. 086 + 1. 105

x* = 3. 061

The critical value for chi-square is
xdz’a B xsz, n20 4 642

where the degrees of freedom are determined as
d=k-1-h=5-1-1=3.
The value of one is assigned to h since only one parameter was estimated
from the data.

Since the calculated value of chi-square is less than the critical value,

the hypothesis that the data came from an exponential distribution is not
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rejected. This indicates that it is reasonable to use the exponential function

as the reliability function for the component on which the data were collected.

Component Reliabilities for the Electrical Power System

The component reliabilities for components in the electrical power system
have been computed based on the data in a report on similar components
operating in a similar environment. 10 gince the data provide mean-time-
between failures (m) and failure rates (1), it is evident that the exponential
function has been established as the reliability function for the components.

Table III provides for each component in the system the appropriate name,
the mean-time-between failures (m) in hours or cycles, the failure rate (A)
in failures per hour, and the computed reliability.

The component reliabilities have been computed based on an operating
time of one hour. This is a reasonable time to use in view of the typical one-
hour flights expected for a small twin-engine passenger plane. Components
which are cycle sensitive are considered to cycle twice during a flight. The

failure rate entered in Table III is appropriately adjusted for these items.

105, J. Cyran, Electrical Power System Failure Rates, Engineering
Report No. RE-103, Douglas Aircraft Co., Long Beach, California
(January 1966).
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Table III. Component Data for Electrical Power System

m

(hours or A
Component cycles) (per hour) Reliability
Generator 2,500 hours 0. 000400 0. 999600
Generator
Relay 31,544 cycles 0. 000063 0. 999937
AC Cross
Tie Relay 18,318 cycles 0. 000109 0. 999900
Any Bus 500,000 hours 0. 000002 0.999998
AC Ground
Service Tie
Relay 10,137 cycles 0. 000197 0. 999800
Transformer
Rectifier
(T-R) 215,666 hours 0. 000005 0. 999995
Reverse
Current
Relay 250,000 hours 0. 000004 0. 999996
DC Ground
Service Tie
Relay 23,177 cycles 0. 000086 0. 999914
DC Cross
Tie Relay 23,177 cycles 0. 000086 0. 999914




CHAPTER V. FURTHER ANALYSIS OF COMPLEX SYSTEMS

Introduction

In Chapter III, it was pointed out that using the canonical expansion
scheme to determine the system reliability equation becomes prohibitive
when the system has a large number of components and the component proba-
bilities of failure are not small. When this situation occurs, the sum of the
numerical evaluations for the first few success terms does not provide a
sufficiently good approximation.

To illustrate this point, consider the system shown in Figure 5,
Chapter TII. The expansion scheme for this system contains only 32 items.
For the electrical power system, however, the complete expansion would
require 4096 terms. Although identifying success terms in the expansion
would be easy, obtaining the expansion itself would require a tremendous

amount of labor.

A Method for Determining the System Reliability Equation

When conditions are such that the canonical expansion scheme is not
very attractive, the system reliability equation can be obtained by defining
pertinent events for the system. These events may be cutput events
representing outputs from the terminal components of the system, or they may

represent outputs from components internal to the system.
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After these events are defined, equations are written expressing the
probability of their occurrence. The probability of getting output events from
internal components is written in terms of the preceding components. The
probabilities of getting output events from terminal components are written
in terms of the probability of occurrence of the outputs from internal compo-
nents and in terms of the reliabilities of certain components as necessary.

The primary reason for defining output events from certain internal components
is to simplify writing the initial equation for the system reliability. After the
above is accomplished, the system reliability equation is then written in terms
of the probability of occurrence of the events defined in terms of outputs from
terminal components.

This method will be demonstrated first on the system shown in Figure 5,
Chapter III. Success is achieved for this system if there is an output from
component 4, or component 5, or both. The complete reliabiiity function was
derived for this system and is given in Chapter IIIL

Let the following events be defined:

Event A = output from component 4, and
Event B = output from component 5.

If an expression can be derived for the probability of occurrence of the

events A and B, then the system reliability equation can be determined as

Rs = Pr(A) + Pr(B) - Pr(A)Pr(B).
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The equations for the probability of occurrence of events A and B are given
below:
Pr(A) = [RyR3(1 - Ry) + Ry] Ry
Pr(B) = [RyR3(1 - R;) + Ry] Rs.

The system reliability equation is then determined as
R_= [RyRg(1 - Ry) + Ry] Ry+ [RyBy(1 - Ry) + Ry) Ry
- {[ReRs(1 - Ry) +R{] Ry} {[RiRs(1 - Ry) + R,] Ry)
RS = RyR3Ry - R{Ry;R3Ry + RyRy + R{RyR; -~ RyRyR3R;5 + RyR; - RyRyRR R
+ RyRy’Rs’R,R; - Ry*R3RR; + RP*RoRy’RyRs - R{LR,IR,°R R + RyRy’RsR R
- R{*R3R,R; + R{*RyRyR R: -~ RyR,R R;.

This equation can be simplified by using one of the fundamental laws from
Boolean algebra. The law is

xt=x1
As related to the above equation, this can be interpreted as follows: the
probability that a particular component works times the probability that same
component works simultaneously is in reality just the probability that the
component works. Thus, in the above equation,
R& = Ry, Ry =R,, etc.

With this relationship, the equation can be written as

R_ = RyRgR, - RiRyRyR, + RiRy + RiR3R; - R{RyR3R; + RoR5 - R{RyRyRR;

+ R{RyR3R4R5 - RyR3RRy + RjRyR3RR5 ~ R{RyR3RR5 + Ri{RyR3R R

Ic. 1. Lewis, A Survey of Symbolic Logic, Dover Publications, Inc.,
New York, N. Y., 1960, p. 54.
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-RiRsRRs + R{RyR3R R - R{RpRyRs.

The equation can now be simplified and written as

R_=RiRy + RoRs + RR3R; + RyR3Ry = RiRyR3Ry - RiRyR3Rs5 - RiRaR4Rs

- R4{RgR R;5 - RoR3gR4R; + 2R{RyR3R Rs.

This is the same equation that was obtained from the complete expansion in
Chapter III and thus demonstrates the validity of this method. It should be
pointed out that if two or more factors in an equation contain terms involving
some components which are the same, and multiplication of these factors is
indicated, then the multiplication must be performed and the resulting

expression simplified by applying the fundamental Boolean law.

Application of the Method to the Electrical Power System

The method that has just been demonstrated in the previous section can
now be applied to the electrical power system.

Reference to Figure 6, Chapter III, indicates that success is achieved
for the electrical power system if there is an output from component 8 or 10 or
both, and from component 11 or 12 or both. Let the following events be
defined:

Event E = output from component 4,
Event F = output from component 5,
Event AC = output from component 8 or 10 or both, and

Event DC = output from component 11, or 12, or both.
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An expression can be derived for the probability of occurrence of each
of the above events. For the event E, the equation is

Ry = [RsBRs(1 - Ry + Rq] Ry

RE = R1R4 + R2R3R4 - R1R2R3R4.

For the event F, the equation is

R = [RiR3(1 - By) + Ry] R,

RF = R2R5 + R1R3R5 - R1R2R3R5.

For the event AC, the equation is

R, = RpRs+ R Ry~ RoRR Ry

For the event DC, the equation is

RDC = RERGRﬁ + RFR'IRlZ + RER6R9R12 + RFR7R9R11 - RERGRFR7R9R11

- R_RR _RiRRp, - R_RGR _RiRyRyp - RLRRsR;Ry - R KRR yRy

E
+ ZRERGRFR'IR!)R uR 12-

F

The system reliability equation is then determined as

R =R, R o= R.ReReRy + RoR RiRRyp + R ReRReRpy + R RiRgReRyy

- RpR o ReRRReRyy - RLR_RRRRsRpp - RpR _ReR:RgRy Ry - RpReRgRyR Ry

- RpRpRiRReR 1Ry + 2R R ReRiRgReRyRyp + RpRReRyoRyy + R RiR Ry
* RpRLReRoRyRyp + R RiRgR1pRyy - R R ReR/RsR1oRyg - R R RgRiRsR Ry,

- RpRpReRiR1oRyRp - R R ReBRR1pR1yRp - R RiRR R 1Ry,

+ 2RLR - ReRiRsR 1R 1Ry + R R RiReRsR1pR 1R 1y - 2R R ReR7RgRoR (oR 4Ry

- RpR ReRgR1oR11 - RpR _RiRgRyRyp - RLR ReRgRRygRy, - R R _RiRgRsR19R1g

* RpRoReRiRgR9R10R1y + Ry R ReRRgRoR1oRyy + R R _ReR:RgR1RyRyy
+ RpR ReRgRgR10R 11 Ry, .
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It is more convenient to obtain a numerical estimate of the system

reliability for a specific operating time by first computing the values for RE

?

RF RERF, R¢, and Ry, and then substituting them into the above equation.

The expression for RE was

RE = R1R4 + R2R3R4 - R1R2R3R4.

Substituting the component reliability functions with the appropriate parameters

(established in Chapter IV) gives

-8t i x 10~ —q037 x 10-5t
RE=e"465X1° + e B4 X 107 L —1037 X 107

The expression for RF was

RF = R2R5 + R1R3R5 - R1R2R3R5.

Making the appropriate substitutions gives

-6t -8 -8
RF — e—465 X 10 + e—5'14 X 10 - e 1037 X 10 .

The expression for RERF is
RERF = RiRyR Ry + R{RgR 4R + RyR3R4R5 - 2R 1RyR3RR;.

Making the appropriate substitutions gives
R.R_ =eM0X 10-% 965716 X 10-% 91039 X 10~
EF

The logic component number six is made up of two parallel branches as
can be seen from Figure 4, Chapter III. Let branch "a' denote the branch
consisting of the AC ground service tie relay, ground AC bus, right trans-
former-rectifier No. 2, reverse current relay, and DC ground service tie
relay. Let branch 'b'" denote the branch consisting of the right transformer-
rectifier No. 1 and a reverse current relay. The expression for Ry can then

be written as
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= + -R R, .
Re =R, + Ry~ R.By

The appropriate substitution gives

g
_ o2 x 10t _—ox10-%t  _s03 x 10-%
Rg=e +e e .

For the logic component number seven, branches ''¢' and "d" can be
defined in a similar manner. The expression for R; can then be written as

= + - .
Ry =R, +R -R R,

The appropriate substitution gives

- =8¢
Ry = 2¢-9 x 10 -e-8x 107 %

In fhe system reliability equation, those portions of the terms which
consist of combinations of the components 8 through 12 can be combined
readily by summing their exponents. After this is accomplished, the system

reliability equation would be

_6 & _8 _8
_ -4x 10~ t -4 X 10 -90 X 10 -90 X 10
RS RERee + RERFR7e + RERGe + RERFR7e

- -8 —6 X 10~ - -
- 4R R _ReRie 0 X 17 * - 2R R ReRee™¢ 1077 R Ree™% X 10

E

_6 _6 _6 _8
“R_R _Rpe 2% 107t R R Ree™ X 10 t, R Rpe~d X 10 iR RFRee-so x 10t

EF E

6 6
- 90X 10'6‘3_ — x 10~ —@ x 10- ¢t _ X 10" t
+ RFR,e RERFRGG RFRqe R RFRee

E

6 6 8
- ~gx 10~ ¢t _ -92 x 0= ¢t _ 2 X 10t
R R Rre R R_Ree R R_Rre

- _6 _6
+ GRERFR(;R-,e‘92 x 107t R RFRGR'IG’S x 107t g R Reo™% X 10 t

E E

+ RERFR7e—94 X 10‘6t - oR RFRGR'Ie_M X 10_6t

E
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CHAPTER VI. IMPLEMENTING, CONTROLLING,
AND TESTING THE SOLUTION

Implementation and Controls for the Solution

As discussed in Chapter I, the major problem confronting engineering
management is that of selecting a particular design from several proposed
design concepts based on established criteria. The criteria for selection
might be based on such elements as cost, weight, performance, and reliability.

After one concept is selected, implementation takes place which consists
of the complete development of the chosen design. This will determine whether
or not the design concept is valid from a functional standpoint and if the design
meets the established criteria.

Controls for the solution consist of maintaining a record as to how well
the design is meeting the established criteria throughout its development.

From the standpoint of reliability, if the initial design configuration is changed,
the reliability must be estimated again to determine the effect of the change.

If the reliability estimate decreases significantly, engineering management
should be made aware of the decrease and the designers may be asked to

attempt to improve the design.
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Testing the Solution

Except in unusual cases, the reliability of a system cannot be estimated
from testing until the system has been put into actual operation. Even then,
for complex systems, it may not be possible to get an estimate of the system
reliability until the system has becn operated for many thousands of hours.

When the latter occurs, it is possible in a much shorter time to obtain
reliability estimates of at least some of the components that make up the
system. These component reliability estimates, based on actual operating
experience, can then be used in the system reliability equation to obtain an
estimate of the system reliability. These updated evaluations can then be

compared with the initial predictions.
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CHAPTER VII, CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Ags proposed in Chapter I, this study has been confined to a subproblem of
a major problem. The major problem was viewed as that of selecting one
particular design from several proposed design concepts based on established
criteria. The subproblem as treated here was that of estimating the reliability
of the proposed concepts, with particular emphasis on complex systems.

In Chapter II, the analysis of simple systems was discussed. When a
system is studied for a reliability analysis, a reliability logic diagram is
constructed that shows the reliability relationship of the components that
make up the system. When this diagram resulted in a simple series, parallel,
or series-parallel configuration, the system was viewed as a simple system.
The system reliability equation for such a system can be written by a relatively
easy application of the fundamental probability theorems.

When the reliability logic diagram did not result in one of the above
mentioned configurations, the system was viewed as a complex system. In
Chapter III, a canonical expansion scheme technique was used to estimate the
reliability ofa complex system when the system has a relatively small number of
components or the component probabilities of failure are small. At this point,
the reliability functions for the components that make up a system were

discussed in Chapter IV.
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If the number of components in a system is rather large and the compo-
nent probabilities of failure are not small, the expansion technique becomes
too cumbersome as the number of terms involved grows considerably. When
this situation arises, a method can be used which was developed in Chapter V
to obtain the complete system reliability equation. This method was seen to
depend primarily on defining pertinent output events for the system.

Finally, a limited discussion was provided in Chapter VI on implementing,

controlling, and testing the solution in regard to reliability.

Recommendations

When a system is determined to be complex and the number of components
is small or the component probabilities of failure are small, the canonical
expansion method is recommended for use as it will provide the system relia-
bility estimate fairly quickly. If, however, the number of components is large
and the component probabilities of failure are not small, it is recommended
that the method developed in Chapter V be used.

When the components that make up a system are similar to components
that have operational experience in environments similar to those expected,
then sufficient data are usually available to obtain reliability estimates for
the components. If a component is of a research and development nature,
however, sufficient data are not usually available from testing to obtain a
reasonable reliability estimate. The optimun method of testing would be to

simulate simultaneously as many of the expected environments as possible.
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Since this is usually too expensive, a study should be made on how reliability
tests can be conducted on components without the simultaneous simulation of

the expected environments over a long period of time.
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